7,149 research outputs found

    Hot electron energy relaxation in lattice-matched InAlN/AlN/GaN heterostructures: The sum rules for electron-phonon interactions and hot-phonon effect

    Get PDF
    Using the dielectric continuum (DC) and three-dimensional phonon (3DP) models, energy relaxation of the hot electrons in the quasi-two-dimensional channel of lattice-matched InAlN/AlN/GaN heterostructures is studied theoretically, taking into account non-equilibrium polar optical phonons, electron degeneracy, and screening from the mobile electrons. The electron power dissipation and energy relaxation time due to both half-space and interface phonons are calculated as functions of the electron temperature Te using a variety of phonon lifetime values from experiment, and then compared with those evaluated by the 3DP model. Thereby particular attention is paid to examination of the 3DP model to use for the hot-electron relaxation study. The 3DP model yields very close results to the DC model: with no hot phonons or screening the power loss calculated from the 3DP model is 5% smaller than the DC power dissipation, whereas slightly larger 3DP power loss (by less than 4% with a phonon lifetime from 0.1 to 1 ps) is obtained throughout the electron temperature range from room temperature to 2500 K after including both the hot-phonon effect (HPE) and screening. Very close results are obtained also for energy relaxation time with the two phonon models (within a 5% of deviation). However the 3DP model is found to underestimate the HPE by 9%. The Mori-Ando sum rule is restored by which it is proved that the power dissipation values obtained from the DC and 3DP models are in general different in the pure phonon emission process, except when scattering with interface phonons is sufficiently weak, or when the degenerate modes condition is imposed, which is also consistent with Register’s scattering rate sum rule. The discrepancy between the DC and 3DP results is found to be caused by how much the high-energy interface phonons contribute to the energy relaxation: their contribution is enhanced in the pure emission process but is dramatically reduced after including the HPE. Our calculation with both phonon models has obtained a great fall in energy relaxation time at low electron temperatures (Te < 750 K) and slow decrease at the high temperatures with the use of decreasing phonon lifetime with Te. The calculated temperature dependence of the relaxation time and the high-temperature relaxation time ∼0.09 ps are in good agreement with experimental results

    At a Crossroads: American Workers Assess Jobs and Economic Security Amid the Race for President

    Get PDF
    New national Work Trends study finds high level of concern about job security, economy, and that citizens are divided on candidates' ability to address their concerns

    Momentum relaxation due to polar optical phonons in AlGaN/GaN heterostructures

    Get PDF
    Using the dielectric continuum (DC) model, momentum relaxation rates are calculated for electrons confined in quasi-two-dimensional (quasi-2D) channels of AlGaN/GaN heterostructures. Particular attention is paid to the effects of half-space and interface modes on the momentum relaxation. The total momentum relaxation rates are compared with those evaluated by the three-dimensional phonon (3DP) model, and also with the Callen results for bulk GaN. In heterostructures with a wide channel (effective channel width >100 Å), the DC and 3DP models yield very close momentum relaxation rates. Only for narrow-channel heterostructures do interface phonons become important in momentum relaxation processes, and an abrupt threshold occurs for emission of interface as well as half-space phonons. For a 30-Å GaN channel, for instance, the 3DP model is found to underestimate rates just below the bulk phonon energy by 70% and overestimate rates just above the bulk phonon energy by 40% compared to the DC model. Owing to the rapid decrease in the electron-phonon interaction with the phonon wave vector, negative momentum relaxation rates are predicted for interface phonon absorption in usual GaN channels. The total rates remain positive due to the dominant half-space phonon scattering. The quasi-2D rates can have substantially higher peak values than the three-dimensional rates near the phonon emission threshold. Analytical expressions for momentum relaxation rates are obtained in the extreme quantum limits (i.e., the threshold emission and the near subband-bottom absorption). All the results are well explained in terms of electron and phonon densities of states

    Modeling the Jovian magnetic field and its secular variation using all available magnetic field observations

    Get PDF
    We present new models of Jupiter's internal magnetic field and secular variation from all available direct measurements from three decades of spacecraft observation. A regularized minimum norm approach allows the creation of smooth, numerically stable models displaying a high degree of structure. External field from the magnetodisk is modeled iteratively for each orbit. Jupiter's inner magnetosphere is highly stable with time, with no evidence for variation with solar activity. We compare two spherical harmonic models, one assuming a field constant in time and a second allowing for linear time variation. Including secular variation improves data fit with fewer additional parameters than increasing field complexity. Our favored solution indicates a ∼0.012% yr−1 increase in Jupiter's dipole magnetic moment from 1973 to 2003; this value is roughly one quarter of that for Earth. Inaccuracies in determination of the planetary reference frame cannot explain all the observed secular variation. Should more structure be allowed in the solutions, we find the northern hemispherical configuration resembles recent models based on satellite auroral footprint locations, and there is also evidence of a possible patch of reversed polar flux seen at the expected depth of the dynamo region, resembling that found at Earth and with implications for the Jovian interior. Finally, using our preferred model, we infer flow dynamics at the top of Jupiter's dynamo source. Though highly speculative, the results produce several gyres with some symmetry about the equator, similar to those seen at Earth's core-mantle boundary, suggesting motion on cylinders aligned with the rotation axis

    The response of the magnetosphere-ionosphere system to a sudden dynamic pressure enhancement under southward IMF conditions

    Get PDF
    The magnetospheric response to step-like solar wind dynamic pressure increases under southward IMF conditions is studied using the University of Michigan MHD code. A two phased response in the ionosphere is observed, similar to what is observed when the IMF is northward by looking into the residual potential and field-aligned current (FAC) patterns in the ionosphere. The first phase response right after the high pressure enhancement hits the magnetopause is associated with a pair of FACs downward in the postnoon and upward in the prenoon region. These FACs are caused by dusk-to-dawn electric fields inside the dayside magnetopause launched by a fast mode compressional wave. The second phase response shows another pair of potential cells as well as FACs in opposite polarity, which originates from magnetospheric vortices on the equatorial plane. The vortices appear to be formed by the recovery of the system from the fast mode wave

    What moderates the attainment gap? The effects of social identity incompatibility and practical incompatibility on the performance of students who are or are not Black, Asian or Minority Ethnic

    Get PDF
    A successful journey through higher education is, for many, a once in a lifetime opportunity for social mobility. Unfortunately, one notable feature of higher education systems is that students from some backgrounds do not achieve the same academic attainments as do others. The current study tests the role of one particular set of processes: social identity (in)compatibility on academic performance. Participants were recruited at two time points from a pool of first year undergraduates at a modern London University (N=215) of which 40.1% were classed as Black, Asian or Minority Ethnic (BAME), 57.1% as non-BAME and 2.8% did not provide this information. A prospective design was employed: Alongside demographic data, measures at the start of the academic year consisted of measures of student and ethnic identity, and both practical and identity incompatibility. At the end of the academic year, average marks achieved were gained for each student from the university’s registry system. Results indicate that BAME students had equal levels of student identity to non-BAME students, but higher levels of ethnic identity. They also typically experienced higher levels of both practical and identity incompatibility. Finally, BAME students had lower attainment than did non-BAME students. Both practical and identity incompatibility appeared to moderate this effect. However, contrary to predictions, it was only under conditions of low and medium levels of incompatibility that BAME students attained lower marks than their non-BAME peers. The theoretical and practical implications of these findings are discussed

    Measurements of Nitric Oxide During a Stratospheric Warming

    Get PDF
    The altitude distribution of NO was measured between 12 and 33 km near 54°N during the stratospheric warming of February, 1979. The NO mixing ratios were considerably smaller compared to summer conditions, especially below 23 km. The measurements are used to estimate the distribution of NO2 for comparison with ground‐based column measurements and to show that during the warming NOx is at least a factor of two lower than is observed in summer at this latitude. This reduction in NOx is shown to be consistent with a larger fraction of odd‐nitrogen existing as N2O5
    corecore